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Abstract 

This report describes an example application of the Attribute-Driven Design (ADD) method de-
veloped by the Carnegie Mellon® Software Engineering Institute. The ADD method is an ap-
proach to defining a software architecture in which the design process is based on the quality at-
tribute requirements the software must fulfill. ADD follows a recursive process that decomposes a 
system or system element by applying architectural tactics and patterns that satisfy its driving 
quality attribute requirements. 

The example in this report shows a practical application of the ADD method to a client-server 
system. In particular, this example focuses on selecting patterns to satisfy typical availability re-
quirements for fault tolerance. The design concerns and patterns presented in this report—as well 
as the models used to determine whether the architecture satisfies the architectural drivers—can 
be applied in general to include fault tolerance in a system. Most of the reasoning used throughout 
the design process is pragmatic and models how an experienced architect works.  
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1 Introduction 

This report describes the practical application of the Attribute-Driven Design (ADD) method de-
veloped by the Carnegie Mellon® Software Engineering Institute (SEI). The ADD method is an 
approach to defining a software architecture in which the design process is based on the quality 
attribute requirements the software must fulfill. ADD follows a recursive process that decomposes 
a system or system element by applying architectural tactics and patterns that satisfy its driving 
quality attribute requirements.  

The example in this report applies ADD to a client-server system to satisfy several architectural 
drivers, such as functional requirements, design constraints, and quality attribute requirements. In 
particular, this example focuses on selecting patterns to satisfy typical availability requirements 
for fault tolerance. The design concerns and patterns presented in this report—as well as the mod-
els used to determine whether the architecture satisfies the architectural drivers—can be applied in 
general to include fault tolerance in a system. Most of the reasoning used throughout the design 
process is pragmatic and models how an experienced architect works.  

1.1 SUMMARY OF ADD 

This example follows the most current version of the ADD method as described in the companion 
technical report, Attribute-Driven Design (ADD) Version 2.0 [Wojcik 2006].1 The eight steps of 
the ADD method are shown in Figure 1 on page 2. 

Each step in the method is described in Section 4 of this report, “ADD Second Iteration.” How-
ever, the method can be summarized as follows: 

• Step 1 verifies that there are sufficient requirements. It requires that the architectural drivers 
(functional requirements, design constraints, and scenarios) are prioritized by the stake-
holders before proceeding. However, in the example we’re using, the details of the first itera-
tion are missing. The prioritization of the architectural drivers is shown in Step 3 of the sec-
ond iteration. 

• Steps 2 through 7 are completed sequentially for each iteration. First, we choose an element 
to decompose (Step 2), and then we step through the process to complete the design. These 
steps are shown individually in Section 4 of this report. 

 

 

 

 

 
® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 

1 The book Software Architecture in Practice first detailed the ADD method [Bass 2003, p. 155–166]. 
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Figure 1: Steps of ADD2 

1.2 EXAMPLE PROCESS 

In the design of large-scale systems, many design activities occur in parallel with each parallel 
activity developing a portion of the architecture. These separate design pieces must be merged 
(and possibly changed) to create a consistent and complete architecture that meets all the stake-
holder requirements.  

In our example, we assume that the architecture team has already conducted the first iteration of 
ADD and developed an overview of the architecture. The results of that first iteration include 
placeholders for “fault-tolerance services” and other services such as “start-up services” and “per-
sistent storage services.” In Section 2 of this report, we sketch out the first iteration results to help 
explain the resulting architecture.  

 
2 This figure is copied from Wojcik’s work [Wojcik 2006]. 
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For the second iteration, the architecture team assigns the “fault-tolerance services” design re-
quirement to a fault-tolerance expert for further refinement. This iteration, which focuses on the 
“fault-tolerance services” system element, is discussed in detail in Section 4. In that section, we 
also review the different fault-tolerance concerns, alternative design patterns, and the reasoning 
used to select among the alternatives to satisfy the architectural drivers. In this selection process, 
we must satisfy an end-to-end timing deadline starting with the failure and ending with a fully 
recovered system. To this end, we build a timing model to use as an analysis tool. Recall that we 
are drafting an architecture that satisfies the requirement that an end-to-end timing scenario be 
met when a fault occurs; however, we are not trying to build a complete architecture at this stage. 
The results of this iteration will be merged with the designs of other parallel activities. 

The fault-tolerance expert is given some leeway in not satisfying all the architectural drivers. The 
expert may return to the architecture team and request relief from specific architectural drivers, if 
they force the solution space to use complex patterns that are difficult to implement. The architec-
ture team has the opportunity to revisit some of the requirements given to the fault-tolerance ex-
pert, make changes, and allow the expert to find a more reasonable solution. 

When fault tolerance is being addressed, existing services may be used in some cases, such as a 
health monitoring or warm restart service using a proxy. These on-hand services can become de-
sign constraints and cause the architect to make fewer design choices. In our example, however, 
we include the full range of design choices. 

Overall, our approach to introducing fault tolerance is general and may be used as a template for 
designing fault-tolerance architectures.  
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2 System Definition  

This section describes the basic client-server system in our example. We are designing its archi-
tecture in terms of three architecture requirements: functional requirements, design constraints, 
and quality attribute requirements. 

2.1 FUNCTIONAL REQUIREMENTS 

Figure 2 depicts a functional overview of our client-server example. 

 

Figure 2: Functional Overview 

The Track Manager provides a tracking service for two types of clients: 

• update clients: These clients send track updates to the Track Manager periodically. The 
Track Manager can tolerate some occasional loss of updates, especially during transient con-
ditions caused by equipment failure. All update clients perform an update every second, and 
the Track Manager can recover from two missed update signals when it receives the third 
signal. If more than two signals are missed, the operator may have to assist the Track Man-
ager in the recovery process. In other words, if a failure occurs, the processing must restart 
before two seconds have elapsed in order to avoid operator intervention. 

• query clients: These clients operate sporadically and must receive exactly one reply to their 
query. Query clients can be dissimilar with some clients requesting small chunks of data of-
ten (e.g., several kilobytes with five seconds between queries from a single client) and others 
requesting large chunks of data occasionally (e.g., several megabytes with minutes between 
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queries). The response time for queries should be less than double the normal response time 
for a particular query. 

2.2 DESIGN CONSTRAINTS 

Three design constraints are required:  

1. capacity restrictions: The provided processors shall have 50% spare processor and memory 
capacity on delivery, and the local area network (LAN) has 50% spare throughput capability. 
There are 100 update clients and 25 query clients. For the purposes of timing estimates, as-
sume that there are 100 updates and 5 queries per second. 

2. persistent storage service: This service will maintain a copy of state that is checked at least 
once per minute by the Track Manager. If all replicas of the Track Manager fail, a restart can 
begin from the checkpoint file.  

3. two replicas: To satisfy the availability and reliability requirements, a Reliability, Availabil-
ity, and Maintainability (RMA) study has been conducted, and the Track Manager and per-
sistent storage elements shall all have two replicas operating during normal circumstances. 

2.3 QUALITY ATTRIBUTE REQUIREMENTS 

The system stakeholders agree on three quality attribute scenarios that describe the various system 
responses to failures. These scenarios are described in Tables 1–3. 

Table 1: Quality Attribute Scenario 1: Quick Recovery 
Element Statement 

Stimulus A Track Manager software or hardware component fails. 

Stimulus source A fault occurs in a Track Manager software or hardware 
component. 

Environment Many software clients are using this service. At the time of 
failure, the component may be servicing a number of cli-
ents concurrently with other queued requests. 

Artifact Track Manager 

Response All query requests made by clients before and during the 
failure must be honored. 

Update service requests can be ignored for up to two sec-
onds without noticeable loss of accuracy. 

Response measure The secondary replica must be promoted to primary and 
start processing update requests within two seconds of the 
occurrence of a fault. 

Any query responses that are underway (or made near the 
failure time) must be responded to within three seconds of 
additional time (on average). 
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Table 2: Quality Attribute Scenario 2: Slow Recovery 
Element Statement 

Stimulus A Track Manager hardware or software component fails 
when no backup service is available. 

Stimulus source An error occurs in a Track Manager software or hardware 
component. 

Environment A single copy of the Track Manager is providing services 
and it fails. 

A spare processor is available that does not contain a copy 
of this component. 

A copy of the component is available on persistent storage 
and can be transferred to the spare processor via the LAN. 

Artifact Track Manager  

Response The clients are informed that the service has become  
unavailable. 

A new copy of the service is started and becomes opera-
tional. The state of the component on restart may differ 
from that of the failed component but by no more than one 
minute. 

The clients are informed that the service is available to 
receive update signals. 

For some tracks, the new updates can be automatically 
correlated to the old tracks. For others, an administrator 
assists in this correlation. New tracks are started when 
necessary. 

The clients are then informed that the service is available 
for new queries. 

Response measure The new copy is available within three minutes. 

 

Table 3: Quality Attribute Scenario 3: Restart 
Element Statement 

Stimulus A new replica is started as the standby. 

Stimulus source The system resource manager starts the standby. 

Environment A single replica is servicing requests for service under  
normal conditions. No other replica is present. 

Artifact New replica of the Track Manager  

Response The initialization of the new replica has a transient impact 
on service requests that lasts for less than two seconds. 

Response measure The initialization of the new replica has a transient impact 
on service requests that lasts for less than two seconds. 
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3 Applying ADD  

It takes at least two iterations through the ADD process to develop an architecture that satisfies 
the architectural requirements of a proposed system. As shown in Figure 1 on page 2, Step 1 (de-
scribed below) is conducted only once to ensure that the information you have about the require-
ments is sufficient. We do not discuss the design steps in the first iteration, since our primary in-
terest is in fault tolerance. The architecture team created the architectural views shown in Figure 3 
and outlined in Section 3.2. A “fault-tolerance services” element is included in this view. This 
element is assigned to a fault-tolerance expert for design in parallel with some other designs (for 
example, start-up services), which we do not describe here. The fault-tolerance expert proceeds 
with the second iteration of the ADD method and decomposes different aspects of the fault-
tolerance services. 

3.1 STEP 1 OF THE ADD METHOD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS 
INFORMATION 

Section 2 (see page 5) lists the requirements for the example, which consist of functional require-
ments, design constraints, and quality attribute requirements.  

3.2 RESULTS OF THE FIRST ADD ITERATION 

The architecture team conducts the first iteration. This iteration uses a set of architectural drivers 
consisting of the highest priority requirements, scenarios, and their associated design constraints. 
These architectural drivers, the details of the team’s reasoning, and the requirements gleaned dur-
ing Step 1 are not included here. The resulting architecture is shown in Figure 3 and further de-
scribed in the rest of this section. In addition, the software elements are summarized in Table 6 on 
page 12. 

1. Our design uses a client-server model where the Track Manager provides services to the up-
date and query clients. Only the primary connectors are shown in the diagram; to simplify it, 
some secondary interfaces are not shown (for example, all clients, Track Manager elements, 
and most services would have connectors to the naming service). 

2. The Track Manager has been broken into two elements: A and B. This decomposition allows 
two deployment strategies to be considered:  

• Strategy 1: Both elements (A and B) operate in a single processor, P1. A and B to-
gether consume 50% of the processor duty cycle to handle 100 updates and 30 queries. 
This strategy satisfies the system performance requirements.  

• Strategy 2: Element A is in processor P1, and element B is in processor P2. Together, 
they can handle 150 update clients and 50 query clients. This strategy exceeds the sys-
tem performance requirements. 
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Figure 3: Software Element Primary Connectivity  

The results of analyzing these design strategies are shown in Table 4. Communication system 
bandwidth increases by 2% when the components are placed in different processors. 

Table 4: Deployment Characteristics 
 P1 P2 #Updates #Queries P1 Load P2 Load 

Strategy 1 A, B  100 30 50% N/A 

Strategy 2 A B 150 50 50% 30% 

  

3. The communication mechanisms between the update and query clients and the Track Man-
ager differ: 

• Update clients use an asynchronous communication mechanism. They send an update 
message, receive no reply, and are not suspended while the message is being delivered. 
(If a publish/subscribe service were available, it would be used instead.) 

• Query clients use a synchronous communication mechanism. They make a service 
request and are suspended until they receive the reply. 

4. Elements A and B both contain state data that must be saved as a checkpoint in persistent 
storage. The elapsed times taken to copy the state to and recover the state from persistent 
storage are identical (see Table 5). 
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Table 5: Persistent Storage Elapsed Time 

# Component Time 

1 A 0.8 seconds 

2 B 0.6 seconds 

5. A middleware naming service accepts the name of a requested service and returns an access 
code for the service.  

6. A middleware registration service refuses service to new clients if providing it would cause 
persistent storage to exceed its spare capacity limit. For simplicity’s sake, the connections 
among clients and this service are not shown in Figure 3. 

7. A separate team is assigned to consider the start-up of the Track Manager elements. The in-
teractions between the initial designs of the start-up and fault-tolerance services will be re-
solved after both designs have been completed. 

8. Both A and B register their interfaces with the naming service. Once again, for simplicity’s 
sake, the connections among the functions and this service are not shown in Figure 3.  

9. What happens when a service is requested from A or B for the first time depends on which 
type of client is making the request: 

• When an update client is making the request, the request goes directly from A or B to 
the asynchronous communication service and then to the naming service to get the 
handle for the service. (At this point, the communication mechanism caches that han-
dle, so it doesn’t have to go and get it again the next time it receives a request for that 
service.) Then, the communication service sends the request to A or B, appropriately. 
The update client can continue operation without waiting for a reply. 

• When a query client is making the request, the request goes directly from A or B to the 
synchronous communication service and then to the naming service to get the handle 
for the service. (At this point, the communication mechanism caches that handle, so it 
doesn’t have to go and get it again the next time it receives a request for that service.) 
Then, the communication service sends the request to A or B, appropriately, and waits 
until it receives a reply. Once it does, it sends the reply to the query client. During this 
whole time, the query client is blocked from execution until it receives that reply. 

10. The team decides to have a fault-tolerance expert refine the fault-tolerance placeholder. In 
fact, they suspect that the fault-tolerance placeholder is a notional concept that will permeate 
the system—not only will new modules have to be added, but changes to the functionality 
and module interfaces will also have to be made. At this point, they do not know which 
modules will be affected. The modules already defined, which include the placeholder (PH1) 
for the fault-tolerance services, are listed in Table 6. 
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Table 6: Elements After Iteration 1 
# Element Fault-Tolerance 

Class (Yes/No) 
Allocation of  
Architectural Drivers 

1 Track Manager Yes N/A 

2 Query clients No N/A 

3 Update clients No N/A 

4 Persistent storage Yes N/A 

5 Track Manager A Yes Requirement 1, 3 

6 Track Manager B Yes Requirement 1, 3 

7 Synchronous communication Yes N/A 

8 Asynchronous communication Yes N/A 

9 Naming service Yes N/A 

10 Registration service Yes N/A 

PH1 

 

Fault-tolerance service  
elements 

Unknown Requirement 5 
Scenario 1, 2, 3 
ADD iteration 1: #1, #3 

The fault-tolerance expert is told to concentrate on the fault-tolerance service elements as they 
apply to the Track Manager elements. After this task has been completed and approved by the 
architecture team, the fault-tolerance considerations for the other elements, such as synchronous 
communications, can proceed. These elements may or may not use the same services as the Track 
Manager. The design of making the other elements fault tolerant is not considered here. 

3.3 ORGANIZATIONAL CONSIDERATIONS  

The architecture team decides to consider how to make the Track Manager fault tolerant before 
creating a general approach to fault tolerance. The team asks an architect with experience in fault 
tolerance to take this placeholder and develop a fault-tolerance architecture using these five guide-
lines:  

• Use the requirements, the existing design of the critical element, and the scenarios as the 
architectural drivers for adding fault tolerance to the Track Manager. 

• If, according to the fault-tolerance expert, the architectural drivers are forcing an overly 
complex solution, return to the architecture team with proposals to relax one or more of 
those drivers. The team will make the tradeoff decisions needed to achieve a simpler solu-
tion. 

• Capture the rationale for the fault-tolerance architecture and the alternatives that were con-
sidered. Details about each alternative are not necessary—just the rationale used when 
choosing between the options. 

• Don’t try to address the start-up concerns. Another design team is tackling that problem. The 
start-up and fault-tolerance solutions will be merged at a later stage.  
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• Important: Remember that your design is preliminary and will be merged with other de-
signs proceeding in parallel. Do not develop a complete design. Stop when you are confident 
that your approach will satisfy the architectural drivers; for example, do not build a complete 
set of sequence diagrams or other UML diagrams. 
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4 ADD Second Iteration 

4.1 STEP 1 OF ADD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS 
INFORMATION  

This step is not necessary during each iteration. It was done once at the beginning of the ADD 
process. 

4.2 STEP 2 OF ADD: CHOOSE AN ELEMENT OF THE SYSTEM TO DECOMPOSE  

The fault-tolerance services element is chosen as the system element to decompose. Specifically, 
the Track Manager is targeted, since it is the system’s primary element. As you can see in Table 7, 
other elements in the system must also be fault tolerant; however, the design team wanted to know 
the architectural impact of making the Track Manager fault tolerant before considering the other 
elements. This decision, of course, could lead to backtracking in later ADD iterations if a different 
scheme is needed to add fault tolerance to the other elements.  

4.3 STEP 3 OF ADD: IDENTIFY CANDIDATE ARCHITECTURAL DRIVERS  

Ten drivers and their priorities are listed below in Table 7. Seven drivers are identified from the 
initial pool of architecture requirements. Three are identified from the design constraints resulting 
from the first iteration of ADD. 

Consider the following points as you read Table 7: 
• Drivers labeled (high, high) bear directly on the end-to-end timing requirement of two sec-

onds in scenario 1. This condition is the most difficult to satisfy and has the highest priority 
drivers. 

• Drivers labeled (medium, medium) are associated with the timing when a single copy of the 
Track Manager is operating, and restoration should occur within two minutes. 

• The restart scenario is least important, and a separate “start-up” design effort is considering 
its details. Hence, #3 drivers do not impact the design and are crossed out in the table. As a 
result, only nine architectural drivers should be considered. 
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Table 7: Architectural Driver Priorities 
# Architectural 

Drivers 
Section  
Discussed In 

Importance Difficulty 

1 Scenario 1 
Quick Recovery 

2.3  high high 

2 Scenario 2 
Slow Recovery 

2.3  medium medium 

3 Scenario 3 
Restart 

2.3 low low 

4 Requirement 1 
Track Manager Functionality 

2.1 high high 

5 Design Constraint 1 
Capacity Restrictions 

2.2 high high 

6 Design Constraint 2 
Persistent Storage Service 

2.2 medium low 

7 Design Constraint 3 
Two Replicas 

2.2 high high 

8 ADD Step 1, #2 
Deployment Characteristics 

3.2 high high 

9 ADD Step 1, #3 
Communication Mechanisms 

3.2 high low 

10 ADD Step 1, #4 
Checkpoint Timing 

3.2 high high 

 

4.4 STEP 4 OF ADD: CHOOSE A DESIGN CONCEPT THAT SATISFIES THE 
ARCHITECTURAL DRIVERS  

This step is the first design step in the ADD method.  

Note: This section cross-references Section 7.1 of the SEI technical report titled Attribute-Driven 
Design (ADD), Version 2.0 [Wojcik 2006].  This step is the heart of that document; it’s where 
most of the design alternatives are listed, the preferred patterns are selected, an evaluation is done 
to validate the design, and changes are made to correct for detected deficiencies. Within Section 
7.1, there are six enumerated paragraphs. To simplify your cross-referencing, each of those para-
graphs is referred to in the headings of this report as ADD substep 1, 2…and so forth. 
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4.4.1 Step 4, Substep 1 of ADD: Identify Design Concerns 

The three design concerns associated with fault-tolerance services are3 

• fault preparation: This concern consists of those tactics performed routinely during normal 
operation to ensure that when a failure occurs, a recovery can take place.  

• fault detection: This concern consists of the tactics associated with detecting the fault and 
notifying an element to deal with the fault. 

• fault recovery: This concern addresses operations during a transient condition—the time 
period between the fault occurrence and the restoration of normal operation. 

Table 8 shows these concerns and their breakdown into subordinate concerns, the sections in this 
report where the alternate patterns are listed and the selections are made. 

Table 8: Design Concerns 

Design Concerns Subordinate  
Concerns 

Alternative  
Patterns Section 

Selecting Design 
Pattern Section 

Restart 4.4.2.1  4.4.3.1  

Deployment 4.4.2.2 4.4.3.2  

Fault Preparation 

Data integrity 4.4.2.3  4.4.3.3  

Fault Detection Health monitoring 4.4.2.4  4.4.3.4  

Transparency to  
clients 

4.4.2.5  4.4.3.5  

Start new replica 4.4.2.6  4.4.3.6  

Update client  
behavior after transient 
failure 

4.4.2.7  4.4.3.7  

Update client  
behavior after hard  
failure 

4.4.2.8  4.4.3.8  

Query client behavior 
after transient failure 

4.4.2.9  4.4.3.9  

Fault Recovery 

Query client behavior 
after hard failure 

4.4.2.10  4.4.3.10  

 

 
3  We derived these concerns from the book titled Software Architecture in Practice Second Edition [Bass 2003, p. 101–

105]. That book also notes a fault prevention concern, but it was not needed in our example.  
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4.4.2 Step 4, Substep 2 of ADD: List Alternative Patterns for Subordinate Concerns  

4.4.2.1 Restart 

Four design alternatives for restarting a failed component are shown below in Table 9. Two dis-
criminating parameters are related to these patterns: 
• the downtime that can be tolerated after failure (scenario 1) 

• the manner in which the system treats requests for services in the time interval around the 
failure time; for example, if it honors them and degrades the response time or it drops them 
(scenario 1) 

Table 9 also lists “reasonable” downtime estimates (based on experience) of these discriminating 
parameters.  

Table 9: Restart Patterns 
# Pattern Name Replica Type Downtime  

Estimates 
Loss of  
Services 

1 Cold Restart  Passive > 2 minutes Yes 

2 Warm Standby Passive > 0.3 seconds Perhaps 

3 Master/Master Active > 50 milliseconds No 

4 Load Sharing Active > 50 milliseconds No 

 

4.4.2.2 Deployment  

The two components can be deployed with (1) both primaries on one processor and both seconda-
ries on the second processor or (2) each primary on a different processor. The primaries are de-
noted by A and B; the secondaries by A’ and B’. The failure condition for B mimics that of A and 
is not recorded in the table.  

The two discriminating parameters are 
• the downtime that can be tolerated after failure (scenario 1) 

• the support of 100 update clients and 25 query clients (requirement 2) 
 

Table 10: Deployment Patterns 
# Pattern 

Name 
P #1 P #2 A Fails  # Updates # Queries State  

Recovery Time 

1 Together A, B A’, B’ A’, B’ 100 30 1.4 

2 Apart A, B’ A’, B A’, B 150 50 0.8 

 

4.4.2.3 Data Integrity 

The data integrity tactic ensures that when a failure occurs, the secondary has sufficient state in-
formation to proceed correctly. The patterns are shown in Table 11. 
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Table 11: Data Integrity Patterns 
# Pattern Name Communication  

Loading 
Standby  
Processor 
Loading 

1 Slow Checkpoint 1.2 seconds every  
minute 

None 

2 Fast Checkpoint 1.2 seconds every 2  
seconds 

None 

3 Checkpoint + Log Changes 1.2 seconds per minute 
+ 100 messages per 
second 

None 

4 Checkpoint + Bundled Log 
Changes 

1.2 seconds per minute 
+ 1 message per x sec-
onds 

None 

5 Checkpoint + Synchronize Primary 
and Backup 

1.2 seconds every  
minute  
+ 1 message per x sec-
onds 

Execute to keep 
an updated copy 
of the state 

 

4.4.2.4 Health Monitoring 

A single health monitoring tactic should be considered for fault detection. Table 12 lists the pat-
terns to consider and their discriminating parameters. 

Table 12: Fault Detection Patterns 
# Pattern Name Communication Line Loading 

1 Heartbeat 4 messages ( for A, A’, B, B’) 

2 Ping/Echo 8 messages  
(ping and echo for A, A’, B, B’) 

3 Update Client Detects Failure 0 messages  

4 Query Client Detects Failure 0 messages 

 

4.4.2.5 Transparency to Clients 

We list three alternatives to make faults transparent to the clients in Table 13 below. Pattern 1 has 
no transparency, but patterns 2 and 3 provide transparency. 
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Table 13: Transparency Patterns 

# Pattern Name Protocol Required Timeout Location 

1 Client Handles Failure Unicast  Client 

2 Handles Failure Proxy Unicast Proxy 

3 Infrastructure Handles 
Failure 

Multicast Within the infrastructure 

 

4.4.2.6 Start New Replica 

This step is postponed, since it is closely related to the start-up mechanism that is being explored 
by another team. 

4.4.2.7 Update Client Behavior After Transient Failure 

The operation of the proxy service when a transient failure occurs has already been defined: The 
health monitor informs the proxy service of the failure. Then, this service sends a new secondary 
access code to each asynchronous communication mechanism. This access code will be used for 
the next update request. Essentially, this mechanism promotes the secondary to the primary. 

4.4.2.8 Update Client Behavior After a Hard Failure 

When a primary fails and no secondary is available, one of the design patterns in Table 14 could 
be used. 

Table 14: Patterns for Update Client Behavior After a Hard Failure  
# Pattern Name Impact 

1 Continue to Send Updates Unusable data is sent. 

2 Stop Sending Updates The communication line 
loading during downtime 
is saved. 

3 Save Updates in a File Larger messages are 
loaded on start-up. 

 

4.4.2.9 Query Client Behavior After Transient Failure 

The operation of the proxy service when such a failure occurs has already been defined: The 
health monitor informs the proxy service of the failure. Then, this service sends a new secondary 
access code to each synchronous communication mechanism. If no outstanding service request is 
underway, the mechanism will use this access on the next request. If a service request is under-
way, a new request will be issued to the new access code. It is possible for the synchronous com-
munication to receive multiple replies (a delayed one from the primary and one from the pro-
moted secondary). It must be able to discard the second reply. 

20 | CMU/SEI-2007-TR-005 



 

4.4.2.10 Query Client Behavior After a Hard Failure 

When a primary fails and no secondary is available, the query clients will be informed and can 
adjust their behavior appropriately. In that case, one of the design patterns in Table 15 could be 
used. 

Table 15: Patterns for Query Client Behavior After a Hard Failure  
# Pattern Name Impact 

1 Continue to Send Queries Unusable data is sent. 

2 Stop Sending Queries The communication line 
loading during downtime 
is saved. 

3 Save Queries in a File Larger messages are 
loaded on start-up. 

 

4.4.3 Step 4, Substep 3 of ADD: Select Patterns from the List 

This activity involves selecting a pattern from the list for each set of alternative patterns. When 
making your selection, you reason about which alternative is most suitable. In our example, the 
selections were made independently. In some cases, reasonable values were chosen as design pa-
rameters, such as heartbeat and checkpoint frequencies. In the rest of this section, we consider 
restart, deployment, data integrity, fault detection, transparency to client, start new replica, and 
client behavior after transient and hard failures. For each item, we record our reasoning, decision, 
and the implications of that decision.  

The ADD method calls for the development of a matrix showing the interrelationships between 
patterns and their pros and cons on each architectural driver. It assumes that there will be a rea-
sonable number of possible patterns and that a table is a good way to show the alternatives. Un-
fortunately, the inclusion of all fault tolerances as a single Step-4 design decision creates a total of 
23 patterns—too many to represent in a single table. Hence, each alternative (restart, deployment, 
etc.) is considered separately. The pros and cons in the table are considered in separate sections 
below. Each section has three parts: (1) a reasoning paragraph describing the pros and cons for 
each pattern, (2) a decision statement emphasizing the pattern chosen, and (3) an implication 
statement showing the impact of this decision, including any obvious restrictions on choices not 
yet made.  

4.4.3.1 Restart  

Reasoning 

Both scenario 1 and requirement 1 indicate that the restart time must be less than two seconds; 
thus, Cold Restart pattern is inappropriate (see Table 9 on page 18). The Warm Standby pattern 
seems to easily satisfy the timing requirement described in scenario 1. Hence it is chosen, since it 
is simpler to implement than the Master/Master or Load Sharing patterns. 

Decision 

Use the Warm Standby pattern. 
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Implications 
1. A primary Track Manager for each component (A and B) receives all requests and responds 

to them. 

2. A secondary (standby) Track Manager for each component (A’ and B’) is loaded on another 
processor and takes up memory.  

4.4.3.2 Deployment 

Reasoning 

The architect is familiar with having a single failover scheme for recovery from a software or 
hardware failure. Hence, he chooses the first Together pattern (see Table 10 on page 18), even 
though it has a slower recovery time since the states for both A and B must be read from persis-
tent storage, rather than just A. This pattern meets the processing requirements, although it can 
perform less processing. Note that the granularity of recovery differs from the granularity of fail-
ure, in that A and B must both recover when either one fails.  

Decision 

Use the Together pattern with both primary components that share a processor. Clearly, this op-
tion is suboptimal, since it offers reduced capability and increased recovery time. However, it was 
chosen for reasons of familiarity. 

Implications 
1. The primary components (A and B) share a processor, as do the secondary components (A’ 

and B’). 

2. The system will never be operational with the primary components in different processors. 

4.4.3.3 Data Integrity 

Refer to Table 11, “Data Integrity Patterns,” on page 19.  

Reasoning 
1. Clearly a checkpoint of state every minute is needed to satisfy scenario 2. However, a state 

that is one minute old cannot satisfy scenario 1, since one minute’s worth of upgrades will be 
ignored if only the checkpoint is used on restart. Pattern 1 is rejected. 

2. Pattern 2 would satisfy the upgrade requirements of scenarios 1 and 2; however, it places an 
unacceptable load on the communication system. Pattern 2 is rejected. 

3. Pattern 3 would satisfy scenarios 1 and 2, but—like pattern 2—it places a significant burden 
on the communication system. Pattern 3 is rejected. 

4. Pattern 4 satisfies scenarios 1 and 2 if x is less than two seconds. It also puts a more reason-
able load on the communication system. Having a bundled upgrade periodicity of two sec-
onds appears to be satisfactory, though a more detailed check can be made later (see Section 
5). Pattern 4 is ultimately selected. 

5. Pattern 5 also satisfies the scenarios but is more complex, since the secondary must execute 
every x seconds to update its copy of the state. Recovery would be faster, though, since it 
would not need to read in a checkpoint of the state. Pattern 5 is rejected due to its complex-
ity. 
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Decision 

Use the Checkpoint + Bundled Log Changes pattern. The log files will be used as the basis for 
promoting the new primary.  

Implications 
1. The primary replica saves the state to a persistent CheckpointFile every minute.  

2. The primary keeps a local bundled file of all state changes for two seconds. The primary 
sends it as a LogFile every two seconds.  

3. The promoted primary reads in the CheckpointFile after it is promoted. Then it reads the 
LogFile and updates each state change as it is read. 

4. Next, the promoted secondary writes the newly updated state to persistent storage. 

5. The promoted secondary can now start processing updates and queries without waiting until 
the persistent state update has been completed. 

4.4.3.4 Fault Detection 

Reasoning 

An approach where the clients do not detect failure is preferable, since it implies that the applica-
tion developers must understand the fault-tolerance timing requirements. In comparing the two 
approaches (see Table 12 on page 19), the ping/echo fault detection is more complex than the 
heartbeat detection and requires twice the bandwidth.  

Decision 

Use the Heartbeat pattern. We set the heartbeat at 0.25 seconds, which yields four communication 
messages per second.  

Implications 
1. The heartbeat must be fast enough to allow the secondary to become initialized and start 

processing within two seconds after a failure occurs. Initializing the two checkpoint files 
takes 1.2 seconds. The heartbeat adds an additional 0.25 seconds, leaving 0.55 seconds spare, 
which seems reasonable. 

2. A health monitoring element checks for the heartbeat every 0.25 seconds. When a heartbeat 
is not detected, the health monitor informs all the necessary elements. 

3. If a primary Track Manager component detects an internal failure, the mechanism for com-
municating the failure is to not issue the heartbeat. 

4.4.3.5 Transparency to Client 

Reasoning 

It is undesirable to have the clients handle failure, since this approach requires the programmer 
writing the client to understand the failover mechanism. The failover could be misinterpreted eas-
ily and render it less than robust.  

The infrastructure has no built-in multicast capability, and adding this feature would be expensive. 
You can mimic a multicast with multiple unicasts, but this approach doubles the usage of the 
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communication system, and is therefore undesirable. (To review the pattern options, see Table 13 
on page 20.) 

Decision 

Use the Proxy Handles Failure pattern.  

Implications 
1. The proxy service registers the service methods (for example, A.a, A.b, B.c, B.d) with the 

name server. 

2. The proxy service starts the first components, registering them under different names (AA.a, 
AA.b, BB.c, and BB.d) and does likewise for the secondary components (AA’.a, AA’.b, 
BB’.c, and BB’.d). 

3. The client requests a service (A.a). This request causes the naming service to be invoked and 
to return the access code for A.a, designated as access(A.a). Next, the client invokes 
access(A.a). 

4. The proxy service (A.a) determines that AA is the primary replica and returns access(AA.a) 
to the client as a “forward request to.” 

5. The client invokes access(AA.a) and continues to do so until AA fails. 

6. When the health monitor detects a heartbeat failure in AA, it informs the proxy service. 

7. The proxy informs the synchronous and asynchronous elements of the failure. These ele-
ments send their query and update requests to the newly promoted primary. 

4.4.3.6 Start New Replica 

This step is postponed, since, in this example, it is part of the start-up mechanism being explored 
by another team. 

4.4.3.7 Update Client Behavior After Transient Failure 

A transient failure occurs when the primary fails and a backup is scheduled to take over. In our 
case, the health monitor detects the failure and informs the proxy service. The proxy sends a for-
ward-request access code to the Synchronous Communication Service (SCS). If no requests are 
underway, the SCS simply uses the new access code for all future requests. If a request is under-
way, the SCS executes a forward request with the new access code to the new Track Manager. It 
is possible to get two replies: one reply from the failed Track Manager component, which was 
inexplicably delayed beyond the failure notification, and one from the new Track Manager. If two 
replies are received, the second one is discarded. 

4.4.3.8 Update Client Behavior After Hard Failure 

Reasoning 

Scenario 2 lays the foundation for this choice (see Table 14 on page 20). We are willing to accept 
degraded behavior and restart; therefore, pattern 3 is unnecessary and complicated. There is no 
point in continuing to send updates without having a Track Manager available to receive them. 
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Decision 

We chose the Stop Sending Updates pattern, which, when there is no Track Manager, stops send-
ing updates until a new Track Manager becomes available. 

Implications 

The clients must be able to do two things: (1) accept an input informing them that the Track Man-
ager has failed and (2) stop sending updates.  

4.4.3.9 Query Client Behavior After Transient Failure 

We chose the same pattern as the update client (see Section 4.4.3.7) for simplicity’s sake.  

4.4.3.10 Query Client Behavior After Hard Failure 

We chose the same pattern as the update client (see Section 4.4.3.8) for simplicity’s sake.  

4.4.4 Step 4, Substep 4 of ADD: Determine Relationship Between Patterns and  
Drivers 

A summary of the selected patterns is shown below in Table 16. In the table heading 

• SC# refers to the scenario number that contributes to the selection decision. 

• DC# refers to the previous design # (from iteration 1) that contributed to the selection. 

Table 16: Pattern/Driver Mapping 
# Pattern Types Pattern Selected Architectural Driver 

0 # Replicas Two Replicas Two Replicas (DC#3) 

1 Restart Warm Standby Two Replicas (DC#3) 

Quick Recovery (SC#1) 

2 Deployment Distributed Capacity Restriction (DC#1) 

3 Data Integrity Checkpoint +  
Bundled Log Changes 

Persistent Storage Service (DC#2) 

Capacity Restrictions (DC#1) 

Quick Recovery (SC#1) 

Slow Recovery (SC#2) 

4 Fault Detection Heartbeat Capacity Restriction (DC#1) 

Quick Recovery (SC#1) 

Other- see note below 

5 Transparency to Clients Proxy Handles Failure Capacity Restriction (DC#1) 

Other–see note below 

6 New Replica N/A N/A 

7 Update Client Behavior-  
Transient 

Proxy Handles Failure N/A 

8 Update Client Behavior- 
Hard 

Stop Sending  
Updates 

Capacity Restriction (DC#1) 
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Table 16: Pattern/Driver Mapping (cont’d.) 
# Pattern Types Pattern Selected Architectural Driver 

9 Query Client Behavior-  
Transient 

Proxy Handles Failure N/A 

10 Query Client Behavior- 
Hard 

Stop Sending  
Queries 

Capacity Restriction (DC#1) 

 

Note: There are numerous examples of decisions being made based on the architect’s experience 
and preference rather than on a specific architectural driver. For example, in the fault detection 
selection in Section 4.4.3.4, the architect considered it inappropriate for clients to detect failure. 

4.4.5 Step 4, Substep 5 of ADD: Capture Preliminary Architectural Views 

In this section, we present preliminary architectural views including 
• a table of system elements and the ADD iteration in which it is developed 

• a functional view of the architecture 

• a sequence diagram for a query client’s access to data 
 

4.4.5.1 List of the Elements 

Table 17 lists the system elements and the ADD iteration in which they’re developed. 

Table 17: System Elements and the ADD Iteration in Which They’re Developed 
# This Element Is Developed in This 

ADD Iteration 

1 Track Manager  Requirement 

2 Query clients Requirement 

3 Update clients Requirement 

4 Persistent storage Requirement 

5 Track Manager A 1 

6 Track Manager B 1 

7 Synchronous communications 1 

8 Asynchronous communications 1 

9 Naming service 1 

10 Registration service 1 

11 Health monitor 2 

12 Proxy server 2 

13 CheckpointFileA 2 
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Table 17: System Elements and the ADD Iteration in Which They’re Developed (cont’d.) 
# This Element Is Developed in This 

ADD Iteration 

14 CheckpointFileB 2 

15 LogFileA 2 

16 LogFileB 2 

 

4.4.5.2 A Software Element View of the Architecture 

Figure 4 shows a functional view of the software elements in the architecture and their relation-
ships.  

 

Figure 4: Software Element View of the Architecture 
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4.4.5.3 Sequence Diagram 

The sequence diagram for a query client’s access to data from client A is shown in Figure 5. The 
figure depicts two sequences: 

1. For the first request, the synchronous communication service sends the service request to the 
proxy. The proxy returns a “forward request to A” message. The synchronous communica-
tion service caches the forward request to A and uses it for all future requests. 

2. If A fails to issue a heartbeat to the health monitor, the latter informs the proxy that A has 
failed. The proxy sends a “forward request to A’  ” message to the synchronous communica-
tion service. The service then forwards the request to A’, caches the request, and continues to 
send messages to A’. 

 

 

Figure 5: A Sequence Diagram of Failover from A to A’ 

4.4.6 Step 4.6 of ADD: Evaluate and Resolve Inconsistencies 

In an architecture evaluation, the architect builds models to describe the system’s behavior. The 
architect then analyzes these models to ensure that they satisfy the architectural drivers. In our 
example, we develop a timeline showing the operation around the time of failure. 

Figure 6 models the operation of the system over a time period that includes a failure. 
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Figure 6: Timing Model 

 

The following nine events, which occur in this order, are depicted in Figure 6. 

1. A save is made of state updates to the persistent LogFile. 

2. A heartbeat is detected a number of times after the state save. 

3. A crash failure occurs in the Track Manager. 

4. The health monitor detects the failure when a timeout occurs before the heartbeat. 

5. The secondary Track Manager is promoted to primary. 

6. The secondary service starts to respond to client requests, working off the backlog of re-
quests and giving slower response times. 

7. The service returns to normal when the transient period of slow responses ends. 

8. A new replica completes initialization and is ready to synchronize with the current primary 
and become the secondary. 

9. The new replica has completed any needed state updates, and the process of restoring the 
service is completed. 

Six important timing aspects of the system are shown in Figure 6: 

• Tps: periodicity of the state LogFile save (2 seconds, see Section 4.4.3.3) 

• Th: periodicity of the heartbeat (0.25 seconds, see Section 4.4.3.4) 

• TrA: elapsed time taken to recover the state of A from persistent storage (0.8 seconds, see 
Table 5 on page 11) 

• TrB: elapsed time taken to recover the state of B from persistent storage (0.6 seconds, see 
Table 5 on page 11) 

• TrL: elapsed time to recover the LogFile from persistent storage (estimated at 0.2 seconds) 

• Tus: elapsed time to update the state of A and B from the LogFile (estimated at 0.1 second) 
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The worst-case total time (T1) until the Track Manager recovery occurs when the failure is just 
after a heartbeat and just before the next write of the updates to the LogFile. In this case, the time 
would be 

 T1 = Tps + Th + TrA + TrB + TrL + Tus 

 T1 = 2 + 0.25 + 0.8 + 0.6 + 0.2 + 0.1 = 3.95 

The result is an unacceptable time of 3.95 seconds.  

4.4.6.1 Resolve Timing Inconsistencies 

We can improve our models in several ways, and we must make tradeoffs among these proposed 
improvements. Our main objective is to reduce the restart time from 3.95 seconds to less than 2 
seconds, while ensuring that the communication load remains reasonable. We can modify the im-
portant timing aspects in these ways: 

• Reduce the periodicity of the LogFile save to persistent storage.  Synchronize the LogFile 
save and the heartbeat such that the heartbeat occurs just after a save is initiated; they do not 
need to have the same periodicity. 

• Have the LogFile save to persistent storage serve as the heartbeat equivalent. Send the log 
every 0.5 seconds. Extend the persistent storage element so that it recognizes that a failure to 
receive the LogFile update triggers a request to inform the other necessary elements of a 
failure (i.e., proxy, standby, clients). 

• Make the three persistent storage accesses concurrent instead of sequential.  

• Change the deployment decision to the second pattern, in which the primaries of A and B are 
in different processors; hence, the failure of the processor with component A will be the 
worst case (since it takes more time to recover its state). 

• Change the style of the state update to option 5 in Table 11 (on page 19), in which the sec-
ondary maintains a model of the state by synchronizing with the primary during start-up. It 
also receives a bundle of state updates periodically, thus obviating the need to read from p
sistent storage. 

er-

• Reduce the size of the state to be saved for components A and B by recomputing some state 
data on restart. 

Reasoning 
1. The fault-tolerance designer is reluctant to choose alternative 2, 5, or 6, since they entail re-

questing changes to the previous design. The expert will only do so if there is no other rea-
sonable way to reduce the time within his or her direct control. The expert would propose 
such tradeoffs only after reviewing other alternatives. 

2. The LogFile save to persistent storage can occur every second and be synchronized to occur 
just before every fourth heartbeat. This scheme reduces the terms (Tps + Th) from 2.25 sec-
onds to 1 second. This measure is a gain of 1.25 seconds, which would reduce the response 
to 2.7 seconds, which is still not good enough. This measure could be further improved by 
reducing the periodicity to 0.5 seconds, but that option is rejected. It would cause too much 
additional load on the communication mechanism. 
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3. Access to persistent storage for all three files takes (TrA + TrB + TrL) or 1.6 seconds, if done 
sequentially. However, if accesses are concurrent using asynchronous communications, in 
theory they will take only 0.8 seconds, which is the time required to get the persistent state 
for component A. However, a detailed analysis of the persistent storage shows that the three 
concurrent requests will share some resources and take 1.0 seconds. This reduction is still 0.6 
seconds, which leaves us with a 2.1-second response—still not good enough. 

4. The deployment decision is changed to the second option of having each component A and B 
in a separate processor. Hence, the worst-case access to persistent storage occurs for compo-
nent A and is 0.8 seconds. If this is still done concurrently with the Logfile access, the total 
time for both will be .85 seconds. The savings in the previous step are now invalidated, and 
the 1.6 seconds now takes 0.85 seconds, which yields a 1.95-second response. This response 
does not provide quite enough of a margin. 

5. The only way within the architect’s control to further resolve this problem is to select alter-
native D and change the data integrity style. Taking this approach assumes that the primary 
and secondary states for A and B will not diverge in any way, which is outside of the archi-
tect’s control. The architect then approaches those responsible for the previous design and 
explains the problem and the options. The designer team agrees to reduce the state upgrade 
time for component A to 0.6 seconds and the concurrent access with the Logfile to 0.65 
seconds This change represents a further savings of 0.2 from the previous result and creates a 
response time of 1.75 seconds, which is within a reasonable margin.  

4.4.6.2 Summary of Timing Decisions 

Table 18 summarizes the timing decisions. 

Table 18: Summary of Timing Decisions 
# Description Initial Time 

Interval 
Final Time Interval 

Tps Save FileCheckPoint 2.0 1.0 (see Note 1) 
Th Heartbeat 0.25 0.25 
TrB Recover Checkpoint for B 0.6 0.0 (see Note 2) 
TrA Recover Checkpoint for A 0.8 0.65 (see Note 3) 
TrL Recover LogFile 0.2 0.2 
Tus Update state from LogFile 0.1 0.1 
T Recovery time 3.95 1.75 
   Checkpoint State 60  60 
 

Notes: 

1. The heartbeat and checkpoint save are synchronized together (reasoning point 2 in Sec-
tion 4.4.6.1). 

2. Since A and B are in separate processors, we only have to recover the state of one of 
them for a single failure (reasoning point 4 in Section 4.4.6.1). 

3. The state recovery and checkpoint recovery are performed concurrently (reasoning point 
4 and 5 in Section 4.4.6.1). 
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4.5 STEP 5 OF ADD: INSTANTIATE ARCHITECTURAL ELEMENTS AND ALLOCATE 
RESPONSIBILITIES  

4.5.1 Primary A and B 

The primary and backup elements of both A and B have the same behavior. The behavior of A 
alone is described here. 

• The element A receives messages from both query and update clients. It updates its state 
based on the update client messages and replies to queries from the query clients.  

• Element A is normally deployed on the same processor as the backup copy B’ of the element 
B. Just after a failure occurs to B, B’ is promoted, and both A and B occupy the same proc-
essor until a new version of B is started. The process of switching the primary B to the just-
started element B is not defined. 

• Element A sends a heartbeat to the health monitor every 0.25 seconds. 

• Element A copies its state to CheckpointFileA every minute. 

• Element A accumulates the state changes made due to update client messages and writes 
them to LogFileA every 1.0 seconds. This write is synchronized with sending the check-
point. 

• The start-up of A and A’ was not addressed, since there is another team tackling this issue. 

• The proxy element will receive a request that both copies of the element A have failed, will 
stop sending updates, and will notify the necessary actors. 

4.5.2 Persistent Storage 

There are four persistent storage files: CheckpointA, CheckpointB, LogFileA, and LogFileB. 
All new values of these files overwrite the old values. 

4.5.3 Health Monitor 

The health monitor uses a timer to check whether it has received the heartbeat from A, B, A’, and 
B’. If it fails to receive a heartbeat before the timer expires, it notifies the proxy. 

4.5.4 Asynchronous Communication 

The asynchronous communication mechanism receives a request from the update clients to a 
method (for example, A.a), and directs the request to the appropriate element. 
1. The mechanism sends the name server the method A.a and receives the access code to the 

proxy element for A.a.  

2. The mechanism sends the update message to the proxy element A.a. 

3. When the mechanism receives the forward request for A.a to send the message to AA.a, it 
sends the request to AA.a and caches the handle for AA.a. 

4. Any subsequent requests are made directly to the AA.a handle. 

5. When a failure occurs, the mechanism receives the forward request to AA’.a and uses that 
handle for subsequent requests. 
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6. If AA.a fails and there is no standby, the mechanism informs the update client to stop send-
ing updates. 

4.5.5 Synchronous Communication 

The synchronous communication element receives requests from the query clients and has almost 
the same behavior as the asynchronous communication element. The only difference is that it 
blocks the query client until it receives the answer to the query, which it then sends to the query 
client. 

4.5.6 Proxy 

The proxy element does most of the work in causing a smooth transition to the backup when the 
primary fails. It does the following: 
1. The proxy service registers all the methods associated with both A and B with the naming 

service. 

2. The proxy service starts AA, AA’, BB, and BB’ and registers all their methods with the nam-
ing service. It creates a cache by mapping the names used by the clients (e.g., A.a) and the 
names created by the elements (e.g., AA.a and AA’.a). It determines which element is pri-
mary and which is secondary. 

3. The proxy service is called by either the synchronous or asynchronous communication ele-
ment when a client requests a service; for example, A.a. It replies with a “forward request” to 
AA.a if AA is the primary. 

4. When the health monitor signals the proxy that the primary (e.g., AA) has failed, it sends a 
forward request to both the synchronous and asynchronous communication elements to ac-
cess all the standby methods (e.g., AA’.a), thus promoting AA’ to be primary. 

4.5.7 Update Clients 

The failure of a primary component (e.g., A) and the switchover to A’ are transparent to the up-
date clients. Any updates sent during the window between failure and restoration are lost. But the 
timing window has been analyzed to be small enough for the Track Manager to continue working 
even with these lost messages. When the primary component fails and there is no backup, the up-
date client will be notified and will stop sending updates until the service is restarted. 

4.5.8 Query Client 

The failure of the primary component when there is a backup is once again transparent to the up-
date clients. They will have to wait slightly longer for an answer to their query, but that time has 
been evaluated as acceptable. When the primary component fails and there is no backup, the 
query client will be notified and will stop requesting queries. 

The interfaces have been defined throughout Step 4 in Section 4 but are captured here for consis-
tency and convenience. Note that some of the interfaces that were defined in the first iteration (see 
Section 3.2) are not repeated in Table 19. 
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Table 19: Summary of Interfaces 
From  
Element 

To Element Interface Timing  
Conditions 

Descriptive 
Sections 

Primary A CheckpointA Update state 60 seconds 4.5.1 

Primary A LogFileA Log changes 1 second 4.5.1 

Primary A Health Monitor Heartbeat 0.25  
seconds 

4.5.1 

Primary B CheckpointB Update state 60 seconds 4.5.1 

Primary B LogFileB Log changes 1 second 4.5.1 

Primary B Health Monitor Heartbeat - 4.5.1 

CheckpointA Primary A Update state During  
recovery 

4.5.1 

LogFileA Primary A Log changes During  
recovery 

4.5.1 

CheckpointB Primary B Update state During  
recovery 

4.5.1 

LogFileB Primary B Log changes During  
recovery 

4.5.1 

Health  
Monitor 

Proxy Primary fail-
ure 

Within 1 
second of 
detection 

4.5.3  

Query Client Synchronous 
Communica-
tion 

Request for 
service 

5 per second 4.5.8 

Proxy Naming Registration 
of A, B, A’, 
B’ services 

During  
start-up 

4.5.6 

Proxy  Synchronous 
Communica-
tion 

Primary 
failed (A or 
B) 

During  
recovery 

4.5.6 

Proxy  Asynchronous 
Communica-
tion 

Primary 
failed (A or 
B) 

During  
recovery 

4.5.6 

 

4.6 STEP 7 OF ADD: VERIFY AND REFINE REQUIREMENTS AND MAKE THEM 
CONSTRAINTS 

In Step 7, we verify that the decomposition of the fault-tolerance services supporting the Track 
Manager element meets the functional requirements, quality attribute requirements, and design 
constraints, and we show how those requirements and constraints also constrain the instantiated 
elements. 
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The architectural drivers are shown once more in Table 20 and were used in one or more pattern 
selections (except for scenario 3). The restart scenario was not explicitly used, since the restart 
design was being done in parallel and a later merging was anticipated. 

Table 20: Architectural Drivers 
# Architectural  

Drivers 
Defined in Section Applies to Pattern 

Choices 

1 Scenario 1 
Quick Recovery 

2.3  Restart, Deployment, 
Data Integrity, Fault 
Detection,  

2 Scenario 2 
Slow Recovery 

2.3 Data Integrity 

3 Scenario 3 
Restart 

2.3 Not used 

4 Requirement 1 
Track Manager  
Functionality 

2.1  Restart 

5 Requirement 2 
Checkpoint to  
Persistent Storage 

2.1 Deployment 

6 Design Constraint 1 
Spare Capacity 

2.2 Fault Detection 

7 Design Constraint 2 
Two Replicas 

2.2 Restart, Deployment 

8 ADD Step 1, #1 
Deployment  
Characteristics 

3.2 Restart, Deployment, 
Data Integrity 

9 ADD Step 1, #2 
Communication 
Mechanisms 

3.2 Update Client  
Behavior 

Query Client Behavior 

10 ADD Step 1, #3 
Checkpoint Timing 

3.2 Data Integrity 

 

Notes: 

1. The breakdown of the timing requirements allocation derived from scenario 1 is shown in 
Table 18 on page 31. 

2. The additional capabilities required by the elements defined prior to this step (Track 
Manager, query clients, update clients, persistent storage, synchronous communications, 
and asynchronous communications) are all defined in Section 4.5. The naming service 
and registration service required no extensions. 

3. The responsibilities of the two new elements (proxy service) and (health monitor) are 
fully described in Section 4.5. 
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4.7 STEP 8 OF ADD: REPEAT STEPS 2 THROUGH 7 FOR THE NEXT ELEMENT OF 
THE SYSTEM YOU WISH TO DECOMPOSE 

Now that we have completed Steps 1 through 7, we have a decomposition of the fault-tolerance 
service (specifically, the Track Manager system element). We generated a collection of responsi-
bilities, each having an interface description, functional requirements, quality attribute require-
ments, and design constraints. You can return to the decomposition process in Step 2 where you 
select the next element to decompose. In our case, we do not have child elements to further de-
compose. 
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5 Summary of the Architecture 

The architecture developed up to this point is described in this section. Also included are remind-
ers about the parallel designs underway that this architecture must be resolved with and the issues 
that must still be tackled. 

5.1 ARCHITECTURE SUMMARY 

A summary of the design is given below.  

• The Track Manager has two components (A and B), deployed on two hardware platforms. 
Each hardware platform contains the primary of one component and the secondary of the 
other component. The failure of A and B has equivalent activities, and the failure of Z=A or 
Z=B is discussed below. 

• The primary and secondary components (A, A’ and B, B’) will give a heartbeat every 0.25 
seconds to a health monitor. 

• A persistent storage mechanism is required to save the state of the components every minute. 
Each component will write its state separately to persistent storage as CheckpointA and 
CheckpointB. These writes are synchronized to occur with the heartbeat. 

• Each primary component will cumulate all its update changes for one second and then send 
the bundle to a LogFile in persistent storage. Each component will synchronize the sending 
of its LogFile with the heartbeat. There will be a LogFileA and a LogFileB. 

• When the health monitor determines that a failure in Z has occurred, it informs the proxy 
service and the standby component Z’ of the failure. The proxy service also sends a “forward 
request” to both the asynchronous and synchronous communication components indicating 
that Z’ is the new primary. 

• When the standby component Z’ receives the signal that its primary has failed, it asynchro-
nously reads the CheckpointZ and LogFileZ from persistent storage. It computes the new 
state of Z, which it saves to persistent storage. It is now ready to respond to client requests. 

• When the synchronous communication component receives the “forward request” signal 
from the proxy, it sends its next update to the new primary. It does not know (or care) if pre-
vious updates were received. 

• When the asynchronous communication component receives the signal from the proxy, one 
of the following situations occurs: 

− It has no active requests, so it sends the next update to the new primary. 
− It has an active update underway, so it sends the current request to the new primary. 

• When a new standby replica is started, a primary is already in place.  

• When a new replica is started and promoted to primary, it reads CheckpointZ and 
LogFileZ and updates the state of A. It then proceeds to handle update requests but ignores 
query requests. Many updates are indeterminate because of the downtime. Some help from 
the operator is needed to bring the system back to a reasonable state, at which time queries 
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will be resumed. This design has many overlaps with the initial start-up design, but the de-
tails of the start-up are not part of this design effort. 

5.2 DESIGN ISSUES BEING RESOLVED ELSEWHERE 

Some designs are being resolved elsewhere: 

• the mechanisms for the persistent storage 

• the start-up procedures for A and B and their coordination 

5.3 REMAINING DESIGN ISSUES 

This report provides an overview of how to make the Track Manager fault tolerant and to satisfy 
the architectural drivers, especially the end-to-end timing requirement. Some views of the soft-
ware have been captured, but views are missing, such as class diagrams, layered views, container 
views, use cases, and many sequence diagrams detailing the information embedded in the various 
“Reasoning” and “Implications” sections of Section 4.4.3. In particular, a state transition diagram 
that shows the details of how the software elements respond together to provide the desired be-
havior is missing. This model is the only way to ensure that there are no “timing windows” in the 
behavior.  

In addition, four design issues need to be addressed: 

• How do the health monitor and proxy elements recover from failures in the software or 
hardware, and how they are distributed? 

• The proxy service does not know which clients have a service request underway and which 
do not. How does a client react to a “forward request” when it has no request underway? 

• How does the health monitor know about the proxy? 

• How does the system respond to a failure in a secondary component? 
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6 Comments on the Method 

While working with the example application described in this report, we made the following ob-
servations: 

1. The person doing the design was familiar with the fault-tolerance concerns and alternative 
patterns used in the example. This designer was also familiar with the ways of reasoning 
about selecting between alternatives and the timing model needed to evaluate the effective-
ness of the choices. 

2. The documentation of the ADD results is awkward at times, since we documented develop-
ment according to the structure of the ADD method. The result was rather clumsy documen-
tation with Section 4 having four levels of indentation and the other sections having only one 
or two. However, in most real software architecture description documents, the documenta-
tion structure will not be dependent on the development method (ADD) but rather on the 
most effective way of capturing the views developed.  

3. The developer chose to develop the architecture for fault tolerance in a single iteration, 
which resulted in too many alternative patterns to represent comfortably as a matrix. The 
pros and cons of each pattern were also not detailed explicitly, but were embedded within the 
rationale for making a selection within each pattern alternative. 

4. ADD weakly implies that the development of an architecture is done sequentially—at each 
iteration, an element is chosen for design elaboration, all architectural drivers are known be-
fore starting the design of the element, and this iteration’s results are then used in the next it-
eration. In development of large-scale architectures, this in unlikely to happen. Different ar-
chitects (or architecture teams) will be assigned to different elements of the architecture and 
will work in parallel; that situation will require cooperation between the architects working 
on different elements and an eventual merging of the resulting designs.  

5. The author placed sufficient information about the discriminating parameters in the results of 
the first iteration, especially Table 4 and Table 5. In practice, this is not usually the case; 
rather, the fault-tolerance expert would discover, during Step 4 when evaluating some pat-
tern, that sufficient information was not available and would have to estimate the values as 
described in ADD Section 7.1, points 2a and 2b. 
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7 Conclusion 

This report demonstrates how an experienced designer can use the ADD method to design fault 
tolerance into a system to satisfy some architectural drivers consisting of requirements, stake-
holder-defined scenarios, and design constraints. The concerns, tactics, and patterns listed in the 
various tables in Section 4 are typical of those to be considered for such a design. In cases where 
the architectural drivers are more challenging, the design decisions change, but the basic approach 
can still be followed. Second and third iterations through the design cycle may be necessary. This 
report also clearly distinguishes between choosing well-known patterns during the first iteration 
and the alternatives for improvement during the second iteration. In the first iteration, straightfor-
ward choices were made from predefined patterns; whereas in the second, alternatives included 
changing a number of design aspects to achieve the improved qualities.  
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Glossary  

architectural 
driver 

 An architectural driver is any functional requirement, de-
sign constraint, or quality attribute requirement that has a 
significant impact on the structure of an architecture. 

architectural 
patterns 

 Architectural patterns are well-known ways to solve re-
curring design problems. For example, the Layers and 
Model-View-Controller patterns help to address design 
problems related to modifiability. Patterns are typically 
described in terms of their elements, the relationships be-
tween elements, and usage rules. 

architectural 
tactics 

 Architectural tactics are design decisions that influence 
the quality attribute properties of a system. For example, a 
Ping-Echo tactic for fault detection may be employed dur-
ing design to influence the availability properties of a sys-
tem. The Hide Information tactic may be employed during 
design to influence the modifiability properties of a sys-
tem. 

candidate 
architectural 
driver 

 Candidate architectural drivers are any functional re-
quirements, design constraints, or quality attribute re-
quirements that have a potentially significant impact on 
the structure of an architecture. Further analysis of such 
requirements during design may reveal that they have no 
significant impact on the architecture.  

design concept  A design concept is an overview of an architecture that 
describes the major types of elements that appear in the 
architecture and the types of relationships between them. 

design concern  Design concerns are specific problem areas that must be 
addressed during design. For example, for a quality attrib-
ute requirement regarding availability, the major design 
concerns are fault prevention, fault detection, and fault 
recovery. For a quality attribute requirement regarding 
availability, the major design concerns are resource de-
mand, resource management, and resource arbitration 
[Bass 2003]. 

design 
constraints 

 Design constraints are decisions about the design of a sys-
tem that must be incorporated into any final design of the 
system. They represent a design decision with a predeter-
mined outcome. 
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discriminating 
parameter 

 Discriminating parameters are characteristics of patterns 
that you evaluate to determine whether those patterns help 
you achieve the quality attribute requirements of a system. 
For example, in any restart pattern (e.g., Warm Restart, 
Cold Restart), the amount of time it takes to do a restart is 
a discriminating parameter. For patterns used to achieve 
modifiability (e.g., layering), a discriminating parameter is 
the number of dependencies that exist between elements 
in the pattern. 

functional 
requirements 

 Functional requirements specify what functions a system 
must provide to meet stated and implied stakeholder needs 
when the software is used under specific conditions 
[ISO/IEC 2001]. 

interface  The interface for an element refers to the services and 
properties required and provided by that element. Note 
that interface is not synonymous with signature. Inter-
faces describe the PROVIDES and REQUIRES assump-
tions that software elements make about one another. An 
interface specification for an element is a statement of an 
element’s properties that the architect chooses to make 
known [Bass 2003].  

patterns  See Architectural Patterns. 

property  A property is additional information about a software 
element such as name, type, quality attribute characteris-
tic, protocol, and so forth [Clements 2003]. 

quality attribute  A quality attribute is a property of a work product or 
goods by which its quality will be judged by stakeholders. 
Quality attribute requirements such as those for perform-
ance, security, modifiability, reliability, and usability have 
a significant influence on the software architecture of a 
system [SEI 2007]. 

quality attribute 
requirements 

 Quality attribute requirements are requirements that indi-
cate the degrees to which a system must exhibit various 
properties. 

relationship  A relationship defines how two software elements are as-
sociated or interact with one another. 

requirements  Requirements are the functional requirements, design con-
straints, and quality attribute requirements a system must 
satisfy for a software system to meet mission/business 
goals and objectives. 

responsibility  A responsibility is functionality, data, or information that 
is provided by a software element. 

role  A role is a set of related responsibilities [Wirfs-Brock 
2003]. 
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software 
architecture 

 The software architecture of a program or computing sys-
tem is the structure(s) of the system, which comprise 
software elements, the externally visible properties of 
those elements, and the relationships among them [Bass 
2003]. 

software 
element 

 A software element is a computational or developmental 
artifact that fulfills various roles and responsibilities, has 
defined properties, and relates to other software elements 
to compose the architecture of a system. 

stakeholder  A stakeholder is someone who has a vested interest in an 
architecture [SEI 2007]. 

tactics  See Architectural Tactics. 

 SOFTWARE ENGINEERING INSTITUTE | 45 



 

46 | CMU/SEI-2007-TR-005 



 

Bibliography 

URLs are valid as of the publication date of this document. 

[Avizienis 2004] 
Avizienis, Algirdas; Laprie, Jean-Claude; Randell, Brian; & Landwehr, Carl Source. “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing.” IEEE Transactions on Dependable 
and Secure Computing 1, 1 (January/March, 2004): 11-33. 

[Bass 2003] 
Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice. Reading, MA: Addison-
Wesley, 2003. 

[Clements 2003] 
Clements, P.; et al. Documenting Software Architectures Views and Beyond. Reading, MA: 
Addison-Wesley, 2003. 

[ISO/IEC 2001] 
International Organization for Standardization and International Electrotechnical Commission. 
ISO/IEC 9126-1:2001, Software Engineering–Product Quality–Part 1: Quality Model. 
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22749 (June 15, 
2001). 

[OMG 1999] 
Object Management Group (OMG). Fault Tolerant CORBA. http://www.omg.org/docs/orbos 
/99-12-08.pdf (December 1999). 

[SEI 2007] 
Software Engineering Institute. Software Architecture Glossary. 
http://www.sei.cmu.edu/architecture/glossary.html (2007). 

[Siewiorek 1992] 
Siewiorek, Daniel & Swarz, Robert. Reliable Computer Systems: Design and Evaluation. Burling-
ton, MA: Digital Press, 1992. 

[Wirfs-Brock 2003] 
Wirfs-Brock, Rebecca & McKean, Alan. Object Design Roles, Responsibilities, and Collabora-
tions. Boston, MA: Addison-Wesley, 2003.  

[Wojcik 2006] 
Wojcik, R.; Bachmann, F.; Bass, L.; Clements, P.; Merson, P.; Nord, R.; & Wood, B. Attribute-
Driven Design (ADD), Version 2.0  (CMU/SEI-2006-TR-023). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2006. 
http://www.sei.cmu.edu/publications/documents/06.reports/06tr023.html. 

  

 SOFTWARE ENGINEERING INSTITUTE | 47 

http://www.sei.cmu.edu/architecture/glossary.html
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22749
http://www.omg.org/docs/orbos
http://www.sei.cmu.edu/publications/documents/06.reports/06tr023.html


 

 

 

48 | CMU/SEI-2007-TR-005 



 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruc-
tions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. 
Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, 
Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY 

(Leave Blank) 
2. REPORT DATE 

February 2007 
3. REPORT TYPE AND DATES 

COVERED 
Final 

4. TITLE AND SUBTITLE 
A Practical Example of Applying Application-Driven Design (ADD), Version 2.0 

5. FUNDING NUMBERS 
FA8721-05-C-0003 

6. AUTHOR(S) 
William G. Wood 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 
CMU/SEI-2007-TR-005 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
ESC-TR-2007-005 

11. SUPPLEMENTARY NOTES 
 

12A DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 
 

13. ABSTRACT (MAXIMUM 200 WORDS) 

This report describes an example application of the Attribute-Driven Design (ADD) method devel-
oped by the Carnegie Mellon® Software Engineering Institute. The ADD method is an approach to 
defining a software architecture in which the design process is based on the quality attribute re-
quirements the software must fulfill. ADD follows a recursive process that decomposes a system or 
system element by applying architectural tactics and patterns that satisfy its driving quality attribute 
requirements. 

The example in this report shows a practical application of the ADD method to a client-server sys-
tem. In particular, this example focuses on selecting patterns to satisfy typical availability require-
ments for fault tolerance. The design concerns and patterns presented in this report—as well as the 
models used to determine whether the architecture satisfies the architectural drivers—can be ap-
plied in general to include fault tolerance in a system. Most of the reasoning used throughout the de-
sign process is pragmatic and models how an experienced architect works.  

14. SUBJECT TERMS 

attribute-driven design, ADD, architectural drivers, software architec-
ture, architecturally significant requirements, decomposition 

15. NUMBER OF PAGES 
58 

16. PRICE CODE 
 

17. SECURITY CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

20. LIMITATION OF 
ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-
18 298-102 

 

 


	A Practical Example of Applying Attribute-Driven Design (ADD), Version 2.0
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 SUMMARY OF ADD
	1.2 EXAMPLE PROCESS

	2 System Definition 
	2.1 FUNCTIONAL REQUIREMENTS
	2.2 DESIGN CONSTRAINTS
	2.3 QUALITY ATTRIBUTE REQUIREMENTS

	3 Applying ADD 
	3.1 STEP 1 OF THE ADD METHOD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS INFORMATION
	3.2 RESULTS OF THE FIRST ADD ITERATION
	3.3 ORGANIZATIONAL CONSIDERATIONS 

	4 ADD Second Iteration
	4.1 STEP 1 OF ADD: CONFIRM THERE IS SUFFICIENT REQUIREMENTS INFORMATION 
	4.2 STEP 2 OF ADD: CHOOSE AN ELEMENT OF THE SYSTEM TO DECOMPOSE 
	4.3 STEP 3 OF ADD: IDENTIFY CANDIDATE ARCHITECTURAL DRIVERS 
	4.4 STEP 4 OF ADD: CHOOSE A DESIGN CONCEPT THAT SATISFIES THE ARCHITECTURAL DRIVERS 
	4.4.1 Step 4, Substep 1 of ADD: Identify Design Concerns
	4.4.2 Step 4, Substep 2 of ADD: List Alternative Patterns for Subordinate Concerns 
	4.4.2.1 Restart
	4.4.2.2 Deployment 
	4.4.2.3 Data Integrity
	4.4.2.4 Health Monitoring
	4.4.2.5 Transparency to Clients
	4.4.2.6 Start New Replica
	4.4.2.7 Update Client Behavior After Transient Failure
	4.4.2.8 Update Client Behavior After a Hard Failure
	4.4.2.9 Query Client Behavior After Transient Failure
	4.4.2.10 Query Client Behavior After a Hard Failure

	4.4.3 Step 4, Substep 3 of ADD: Select Patterns from the List
	4.4.3.1 Restart 



	5 Summary of the Architecture
	5.1 ARCHITECTURE SUMMARY
	5.2 DESIGN ISSUES BEING RESOLVED ELSEWHERE
	5.3 REMAINING DESIGN ISSUES

	6 Comments on the Method
	7 Conclusion
	Glossary 
	Bibliography


